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Abstract

Classical β-Laguerre ensembles consist of three special matrix mod-
els taking the form XXT with X denoting a random matrix having i.i.d.
entries being real (β = 1), complex (β = 2) or quaternion (β = 4) nor-
mal distribution. It had been actually believed that no other choice of
β > 0 (besides 1, 2 and 4) would correspond to a matrix model XβX

T
β

which can be constructed with entries from a classical distribution until
the work [5]. Since then the spectral properties of general β-Laguerre
ensembles have been extensively studied dealing with both the bulk
case (involving all the eigenvalues) and the extremal case (addressing
the (first few) largest and smallest eigenvalues). However, the ratio
of the extremal eigenvalues (equivalently the condition number of Xβ)
has not been well explored in the literature. In this paper, we study
such ratio in terms of large deviations.
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